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Raman Spectra of « Quartz Under Uniaxial Stress*
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The experimental results of the stress-dependent frequency and linewidth of two E and three 4; Raman
active vibrations in « quartz are reported and their behavior is qualitatively discussed. The observed
nonmonotonic frequency dependence of the stress induced shifts of the 4, lines can be understood based
on the proposed modified valence-force model that includes the effects of an anharmonic potential and

the applied stress.

I. INTRODUCTION

The binding or interatomic forces in solids are
dependent on the electronic structure surrounding the
atoms. The application of a uniaxial stress, a tempera-
ture change, or an intense laser pulse might be expected
to change the electronic structure in a crystal and
thereby alter the interatomic forces. This alteration
might be indicated by a change in the characteristic
frequencies of a vibrational mode, a change in the
phonon lifetime, and thus a change in linewidth, or the
induced electronic polarizability might be effected
causing a change in the line intensity. Each of these
effects were measured. The Raman line position and
width were reported and discussed for five Raman
lines in a quartz as a function of the applied stress!
and the measured line position shifts of the 4; lines
were compared with changes predicted by a modified
valence-force model developed for this purpose. The
stress-dependent intensities were also measured but are
not reported here.

Quartz at room temperature is a complex crystal
with nine atoms per unit cell; both symmetry argu-
ments and a detailed Raman study? suggest that there
are 44;- and 8 E-Raman active optical phonon modes in
a quartz. Among the models of the a quartz?¢ the
valence-force model proposed by Kleinman and Spitzer?®
gives the most details for the symmetric 4; modes;
they reported both calculated eigenvalues and eigen-
vectors for these modes. The valence-force model
assumes three types of interactions: (1) the Si-O
bond-stretching potential; (2) the O-Si-O angle-
bending potential; and (3) Si-O-Si angle-bending
potential, In the harmonic approximation as assumed

HARK-YD
by Kleinman and Spitzer, the interactions are
Ve=3x 2 [(x,—x,') 2], (1)
Vo,s1= %:’ g; (A cosf)*d?, (2)
and
Veo=3k" %: (A cosf)?d?, (3)
where

A cost=d'[p— (p-7')#'] (x,'—X)
+d7[p'— (p+8")p] (x,—x), (4)

where p is the unit vector representing the bond
direction, k, «’, and «’’ are “spring constants,” d is the
nearest-neighbor silicon-to-oxygen distance and x is
the displacement of either the Si or O atom. The
summation in (1) is over all nearest-neighbor bonds
with one end terminating on a silicon atom in the unit
cell and the summations in (2) and (3) are over all
bond angles at each silicon and oxygen atom within the
unit cell, respectively. Using (1)—(4), Kleinman and
Spitzer solved for the normal-mode vectors and fre-
quencies for the four totally symmetric modes and then
adjusted the “spring constants” to give the best fit
to the measured values. In modifying the valence-force
model to include strain, we replace the displacement x
by x+u in Egs. (1)-(3) by a method suggested by
Born and Huang,® and we also include the lowest-order
anharmonic contribution to the deformed potential.
u is the total displacement due to a homogeneously
strained lattice which contains both microscopic- and
macroscopic-strain  contributions. The anharmonic
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valence—force potentials may be expressed as

V.o =2®3 [(x,/—X,) b, (8)
P
Visi®=25,5: 3'(A cosh) d", (6)
si
and
V0@ =&,0® 3 (A cosf)’d®, (7)
o

where the ®®’s are third-order elastic-force constants.
The microscopic or internal strains represent the
atomic displacements necessary to minimize the
deformation energy; their values were determined for
the valence-force model.® The resulting stress dependent
potential, including the above anharmonic contribu-
tions, was calculated up to first order in u and second
order in x in terms of the normal-mode coordinates of
A; modes given by Kleinman and Spitzer. The changes
in the normal-mode frequencies produced by this stress
dependent potential are evaluated using first-order
perturbation theory® and the results for the four A,
modes are the following:

A7 (207 emY) = 3.96X 104V,
X (—8.25X 10~4%—5.21X 10-%’
+2.91X 103"+ 9.98 X 10-14d,®

—1.49X 107109, 5@ — 3.87X 1071%, 0®), (8a)
Ap5(352 cm™1) =2.72X107%Y,
X (—7.46X 10~4—5.20X 103’
+2.78X 103"+ 3.10X 1043, ®
+2.36X 10799, 5;®—1.51X 10~1%;, 4@), (8b)

A (466 cm1) = 1,683 1047, (— 1.93X 10~
140X 102+ 1.93X 103"+ 5.54X 10-58,®
+3.98X 1071, 5,0 —6.72X 109, o), (8¢)
A7,(1081 cmt) = 7.88X 1057, |
X (377X 10-%—8.65 X 10~
—1.88X 10~ +-9.10 10-1®,®

—7.10X 1074, ;@ —1.87X 107 1®, @), (8d)

where ¥, is the stress (in units of 10° dyn/cm?) applied
to the y face of the crystal in the direction parallel to
the y axis.

The above calculation is consistent with the dis-
cussion of strain given in Born and Huang and the
details are given elsewhere. Equation (8) will be used
later to demonstrate the nonmonotonic frequency
dependence of the stress-induced shifts of the 4, lines
in a quartz.

II. RAMAN SPECTROMETER SYSTEM

The Raman spectrometer system used for these
experiments has been described in detail elsewhere”
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F1c. 1. Experimental raw data for the 128-cm™ line. For
clarity the curves have been shifted in the vertical direction as
indicated. The curves through the data points are least-squares

fits of Lorentzian functions convoluted with the instrument
function.

and is similar in many aspects to that described by
Ducros and Olivie8 A 50-mW He-Ne laser operating
with a uniphase output is used as the excitation source.
The active volume of the sample as determined by the
laser focusing lens, is imaged (1:1) onto the entrance
slit of a grating monochromator. The scattered radiation
flux reaching the photodetector® is such that photon
counting techniques can be used with the advantage
that the output data are in digital form and is therefore
directly compatible with a computer for analysis.
A multichannel analyzer is used for collecting the
output data as well as for controlling the step-wave-
length drive of the monochromator. The instrument
width of this system is comparable with the Raman
linewidths so that a deconvolution procedure is neces-
sary to obtain the true lineshapes. For the spectrometer
system used, this deconvolution is done by computer
giving the true line position, width, and intensity.

The samples used for these experiments were syn-
thetic quartz from several sources as well as natural
quartz also from several sources. Within the accuracy
of our measurements the effects observed were not
dependent on the sample origin. The results described
in the following section were for a sample cut from a
synthetically grown crystal. Each sample, 0.55X
0.55%2.14 cm, was free from twinning and the impurity
concentration was approximately 30 ppm by weight.
The long dimension of the sample was parallel to the
crystallographic « axis and the stress was applied
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TasirE I. Comparison of calculated and observed values of the first derivatives of line position versus applied stress.

Mode
Yo (a"/a Yv) cale (a"/ayv)obu (9v/aP) obs”
(cm™1) x* x/x’ (¢ &, b Py, ®;,0@ (cm™1/kbar) (cm™!/kbar) (cm™!/kbar)
207 0.326 1.28+40.06 1.6-2.1
352 0.021 —0.0540.06 —0.2-40.3
4.32 15 0 2 2 0.5
466 0.132 0.44+40.12 1.2-0.9
1081 —0.109 —0.2-0.4
207 1.28
352 —0.80
4.32 15 0 17.2 4.3
466 0.44
1081
207 1.28
352 —0.56
4.32 10 —2.2 . 14.8 4.2
466 0.44
1081
207 1.28
352 —0.85
4.32 16 1 17.7 4.4
466 0.44
1081

# k's are in units of 105 dyn/cm.
b @'s are in units of 1012 dyn/cm?, and the value of ®,@® within this or-

parallel to the y axis. The incident light was in the
x direction and the scattered light was observed along
the z axis. The stress was applied by placing the sample
between the jaws of a hydraulic press. The scattering
volume was approximately a cylinder 4 mmX50 y in
diameter which is a small fraction of the total sample
volume and thus the applied stress across the scattering
volume was considered to be uniform.

III. EXPERIMENTAL RESULTS

The Stokes components of the Raman spectra were
measured for five of the more intense lines in quartz
as a function of applied stress. The line position, width,
and intensity were measured for each line. Shown in
Fig. 1 are examples of the raw data for the 128-cm™!
line illustrating the importance of the deconvolution
procedure to finding the true linewidth values. From
this figure the change in line position with applied stress
is apparent but the change in linewidth is apparent

only after the deconvolution of the true line shape

with the instrument function.

The uniaxial stress measurements were made for
increasing as well as decreasing pressures and showed
no hysteresis effects. The stress dependence of the line
positions and linewidths are shown in Figs. 2 and 3
for the five lines measured. The intensity data were
also measured for these five lines but are not shown.
For the 128-cm™ line both the Stokes and the
anti-Stokes components were measured. The stress-
dependent 128-cm™! anti-Stokes line positions which are

der-of-magnitude will not affect the calculated results listed.
¢ Asell and Nicol, Ref, 15, hydrostatic pressure.
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not shown behave similarly to the 128-cm~' Stokes
data.

From Fig. 2 it can be seen that the line positions
increase with applied stress for all the lines except the
352-cm™ line which is approximately independent of
stress. The linewidths shown in Fig. 3 are seen to
initially decrease with stress. The effects of the applied
stress on the line position and width are similar to that
observed for decreasing sample temperature.®~* The
increase in frequency as the sample is compressed is
what might be expected since the atoms become more
closely packed making it more difficult for each atom to
move. The phonon lifetimes are affected by multi-
phonon interactions induced by the strain resulting
from the applied stress; various possible strain-induced
multiphonon interactions have been formally con-
sidered in the literature.® For no change in sample
temperature, the increase in phonon frequency would
lower the associated phonon population available for
the multiphonon interactions. The population effect,
perhaps of minor importance, should be included in the
linewidth considerations.

Using Eq. (8) the stress-induced changes in line
frequency were calculated for the four 4; modes and
the results were compared with the slopes found from
Fig. 2. The results are listed in Table I for different
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F1c. 3. Change in the full width at half-maximum versus stress.
The data points have been connected for clarity.
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combinations for the constants k, «/, ¥/, ®,®, ® &®,
and @, 0®. The first values listed were calculated using
the «’s as given by Kleinman and Spitzer. The third-
order ® coefficients were estimated from ultrasonic
third-order elasticity measurements.* The elastic
coefficients are defined to be identical with those
encountered in anharmonic lattice theory and are
proportional to the third-order coefficients in Eq. (8).
Exact data for the ®'s could not be found but their
values will in general be of the same order-of-magnitude
(102 dyn/cm?). For this reason the strain effects were
evaluated for several values of the ®’s. The combina-
tions listed in Table I were chosen to demonstrate the
relative sensitivity of the magnitude of the different
coefficients on the calculated slopes. From the table it
can be seen that the value of (dv/9Y,) is insensitive to
the choice of ®,¢ for all of the A;-vibrations. For the
352-cm! vibration the coefficient ®,,0? is very sensitive
because of the cancellation of the contributions due to
®, 5:® with that due to the x’s as can be seen from
Eq. (8). The 1081-cm™ mode depends on all three
values for the ®’s and is the only mode for which the
third-order stretching coefficient &, is of some im-
portance. The stress dependence on the position of the
1081-cm line was not measured because the line was
too weak.

By way of comparison Asell and Nicol®® have meas-
ured the effect of hydrostatic pressure on the 4;- and
E-mode Raman line position for pressures up to about
40 kbar. Comparing their data for the four 4; lines and
the 128- and 398-cm™! E lines it is seen that the agree-
ment is quite good considering the rather large error
bars on the Asell-Nicol data.

IV. CONCLUSIONS

The results of this research indicate that quantitative
Raman scattering can be used as an effective tool for
detecting and analyzing the effects of homogeneous
strains in crystalline quartz. The valence-force model
used for calculating normal-mode frequencies was
modified by including the effects of an anharmonic
potential and applied stress. As a consequence, the
observed nonmonotonic stress-induced changes in
frequency for the four 4; modes in quartz can be under-
stood with reasonable accuracy.

An apparent correlation is observed between the
stress and temperature dependence®® of the line position
for the five lines measured here and is consistent with
the observations made by Asell and Nicol. The sample
volume change under uniaxial stress is smaller than that
produced by the hydrostatic pressure experiments. Our
modified valence-force model indicates that the stress
dependence of the phonon frequencies depend on
individual normal-mode vibration and probably is not
a simple volume dependence as suggested by Asell
and Nicol.

Using the order-of-magnitude values for the third-
order elastic constants the modified valence-force
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model has been able to demonstrate the non-monotonic
dependence of frequency shift with line frequency for
modes belonging to the same symmetry species. The
set of coefficients, « and ®, giving the best correspond-
ence with the measured values are those listed first in
Table I. The nonmonotonic dependence of frequency
shifts and the insensitiveness of the ®,® suggest that the
frequency shift depends mainly on the way the con-
stituent atoms, especially the oxygens in this case,
move in a normal-mode vibration. The comparison of
the calculated slopes and the measured ones in the first
row of Table I is quite good, considering the kind of
accuracy one may expect even in the calculation of the
second-order elastic constants.’®

* This work was supported in part by a contract with the Air
Force Cambridge Research Laboratories, Office of Aerospace
Research, USAF.
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